6 research outputs found

    Visual Place Recognition in Changing Environments Utilising Sequence-Based Filtering and Extremely JPEG Compressed Images

    Get PDF
    Visual Place Recognition (VPR), part of Simultaneous Localisation and Mapping (SLAM), is an essential task for the localisation process, where each robotic platform is required to successfully navigate through its environment using visual information gathered from the on-board camera. Despite the recent efforts of the research community, VPR remains an improving process. To this end, a large number of deep-learning-based and handcrafted VPR techniques (also referred as learnt and non-learnt VPR techniques) have been proposed to overcome the challenges in this field, such as viewpoint, illumination and seasonal variations. While Convolutional Neural Network (CNN)-based VPR techniques have significant computational requirements that may restrict their applicability on resource-constrained platforms, handcrafted VPR techniques struggle with appearance changes. In this thesis, two mainly unexplored avenues of research are investigated, namely sequence-based filtering and JPEG compression. To overcome the previously mentioned challenges, this thesis proposes a handcrafted VPR technique based on HOG descriptors, paired with an adaptive sequence-based filtering schema to perform VPR in scenarios where the appearance of the environment drastically changes upon different traversals. The technique entitled ConvSequential-SLAM is capable of achieving comparable place matching performance with state-of-the-art VPR techniques at reduced computational costs. The approach utilised for matching sequences of images in the above technique has been employed to investigate the improvement in VPR performance and the computational effort required to execute VPR when utilising a sequence-based filtering approach. As CNNs are computationally demanding, this thesis shows that VPR can be performed more efficiently using lightweight techniques. Furthermore, this thesis also investigates the effects of JPEG compression for VPR applications, where important reductions in both transmission and storage requirements can be achieved. As the VPR performance is drastically reduced, especially for high compression ratios, this thesis shows how a fine-tuned CNN can achieve more consistent VPR performance on highly JPEG compressed data (i.e. above 90% JPEG compression). Sequence-based filtering is introduced to overcome the performance loss due to JPEG compression. This thesis shows that the size of a JPEG compressed image is often smaller than the size of the image descriptor, and therefore should be transferred instead. Furthermore, our experiments also show that the amount of data required for transfer is reduced with an increase in JPEG compression, even when requiring an increased number of images in a sequence. This thesis also analyses the effects of image resolution on the performance of handcrafted techniques, to enable efficient deployment of VPR solutions on commercial products. The analysis performed in this thesis confirms that local feature descriptors are unable to operate on low-resolution images, as no keypoints (salient information) are detected. Moreover, this thesis also shows that the time required to perform VPR is reduced with a decrease in image resolution

    Data Efficient Visual Place Recognition Using Extremely JPEG-Compressed Images

    Full text link
    Visual Place Recognition (VPR) is the ability of a robotic platform to correctly interpret visual stimuli from its on-board cameras in order to determine whether it is currently located in a previously visited place, despite different viewpoint, illumination and appearance changes. JPEG is a widely used image compression standard that is capable of significantly reducing the size of an image at the cost of image clarity. For applications where several robotic platforms are simultaneously deployed, the visual data gathered must be transmitted remotely between each robot. Hence, JPEG compression can be employed to drastically reduce the amount of data transmitted over a communication channel, as working with limited bandwidth for VPR can be proven to be a challenging task. However, the effects of JPEG compression on the performance of current VPR techniques have not been previously studied. For this reason, this paper presents an in-depth study of JPEG compression in VPR related scenarios. We use a selection of well-established VPR techniques on 8 datasets with various amounts of compression applied. We show that by introducing compression, the VPR performance is drastically reduced, especially in the higher spectrum of compression. To overcome the negative effects of JPEG compression on the VPR performance, we present a fine-tuned CNN which is optimized for JPEG compressed data and show that it performs more consistently with the image transformations detected in extremely compressed JPEG images.Comment: 8 pages, 8 figure

    Visual Place Recognition with Low-Resolution Images

    Full text link
    Images incorporate a wealth of information from a robot's surroundings. With the widespread availability of compact cameras, visual information has become increasingly popular for addressing the localisation problem, which is then termed as Visual Place Recognition (VPR). While many applications use high-resolution cameras and high-end systems to achieve optimal place-matching performance, low-end commercial systems face limitations due to resource constraints and relatively low-resolution and low-quality cameras. In this paper, we analyse the effects of image resolution on the accuracy and robustness of well-established handcrafted VPR pipelines. Handcrafted designs have low computational demands and can adapt to flexible image resolutions, making them a suitable approach to scale to any image source and to operate under resource limitations. This paper aims to help academic researchers and companies in the hardware and software industry co-design VPR solutions and expand the use of VPR algorithms in commercial products.Comment: The paper has been accepted for presentation at the Active Methods in Autonomous Navigation Workshop, part of the 2023 International Conference on Robotics and Automation (ICRA

    Sequence-Based Filtering for Visual Route-Based Navigation : Analyzing the Benefits, Trade-Offs and Design Choices

    No full text
    Visual Place Recognition (VPR) is the ability to correctly recall a previously visited place using visual information under environmental, viewpoint and appearance changes. An emerging trend in VPR is the use of sequence-based filtering methods on top of single-frame-based place matching techniques for route-based navigation. The combination leads to varying levels of potential place matching performance boosts at increased computational costs. This raises a number of interesting research questions: How does performance boost (due to sequential filtering) vary along the entire spectrum of single-frame-based matching methods? How does sequence matching length affect the performance curve? Which specific combinations provide a good trade-off between performance and computation? However, there is lack of previous work looking at these important questions and most of the sequence-based filtering work to date has been used without a systematic approach. To bridge this research gap, this paper conducts an in-depth investigation of the relationship between the performance of single-frame-based place matching techniques and the use of sequence-based filtering on top of those methods. It analyzes individual trade-offs, properties and limitations for different combinations of single-frame-based and sequential techniques. The experiments conducted in this study demonstrate the benefits of sequence-based filtering over the single-frame-based approach using various VPR techniques. We found that applying sequence-based filtering to a lightweight descriptor can enable higher VPR accuracy than state-of-the-art methods such as NetVLAD, while running in shorter time. For example, matching a sequence of 16 images, CALC descriptor outperforms NetVLAD on Campus Loop dataset while taking about 22% less time to perform VPR.</p

    Sequence-based filtering for visual route-based navigation: analyzing the benefits, trade-offs and design choices

    No full text
    Visual Place Recognition (VPR) is the ability to correctly recall a previously visited place using visual information under environmental, viewpoint and appearance changes. An emerging trend in VPR is the use of sequence-based filtering methods on top of single-frame-based place matching techniques for route-based navigation. The combination leads to varying levels of potential place matching performance boosts at increased computational costs. This raises a number of interesting research questions: How does performance boost (due to sequential filtering) vary along the entire spectrum of single-frame-based matching methods? How does sequence matching length affect the performance curve? Which specific combinations provide a good trade-off between performance and computation? However, there is lack of previous work looking at these important questions and most of the sequence-based filtering work to date has been used without a systematic approach. To bridge this research gap, this paper conducts an in-depth investigation of the relationship between the performance of single-frame-based place matching techniques and the use of sequence-based filtering on top of those methods. It analyzes individual trade-offs, properties and limitations for different combinations of single-frame-based and sequential techniques. The experiments conducted in this study demonstrate the benefits of sequence-based filtering over the single-frame-based approach using various VPR techniques. We found that applying sequence-based filtering to a lightweight descriptor can enable higher VPR accuracy than state-of-the-art methods such as NetVLAD, while running in shorter time. For example, matching a sequence of 16 images, CALC descriptor outperforms NetVLAD on Campus Loop dataset while taking about 22% less time to perform VPR.</p

    Sequence-Based Filtering for Visual Route-Based Navigation: Analyzing the Benefits, Trade-Offs and Design Choices

    Get PDF
    Visual Place Recognition (VPR) is the ability to correctly recall a previously visited place using visual information under environmental, viewpoint and appearance changes. An emerging trend in VPR is the use of sequence-based filtering methods on top of single-frame-based place matching techniques for route-based navigation. The combination leads to varying levels of potential place matching performance boosts at increased computational costs. This raises a number of interesting research questions: How does performance boost (due to sequential filtering) vary along the entire spectrum of single-frame-based matching methods? How does sequence matching length affect the performance curve? Which specific combinations provide a good trade-off between performance and computation? However, there is lack of previous work looking at these important questions and most of the sequence-based filtering work to date has been used without a systematic approach. To bridge this research gap, this paper conducts an in-depth investigation of the relationship between the performance of single-frame-based place matching techniques and the use of sequence-based filtering on top of those methods. It analyzes individual trade-offs, properties and limitations for different combinations of single-frame-based and sequential techniques. The experiments conducted in this study demonstrate the benefits of sequence-based filtering over the single-frame-based approach using various VPR techniques. We found that applying sequence-based filtering to a lightweight descriptor can enable higher VPR accuracy than state-of-the-art methods such as NetVLAD, while running in shorter time. For example, matching a sequence of 16 images, CALC descriptor outperforms NetVLAD on Campus Loop dataset while taking about 22% less time to perform VPR.Intelligent Vehicle
    corecore